Chapter 3

Computer and Internet Crime

Objectives

• What key trade-offs and ethical issues are associated with the safeguarding of data and information systems?

• Why has there been a dramatic increase in the number of computer-related security incidents in recent years?

• What are the most common types of computer security attacks?

Objectives (continued)

• What are some characteristics of common computer criminals, including their objectives, available resources, willingness to accept risk, and frequency of attack?

• What are the key elements of a multilayer process for managing security vulnerabilities, based on the concept of reasonable assurance?

• What actions must be taken in response to a security incident?

IT Security Incidents: A Worsening Problem

• Security of information technology is of utmost importance
 – Protect confidential data
 • Safeguard private customer and employee data
 – Protect against malicious acts of theft or disruption
 – Must be balanced against other business needs and issues

• Number of IT-related security incidents is increasing around the world

• Protect against unauthorized access to systems and data
 – Must be balanced against business needs and issues
IT Security Incidents: A Worsening Problem (continued)

• Computer Emergency Response Team Coordination Center (CERT/CC)
 – Established in 1988 at the Software Engineering Institute (SEI)
 – Charged with
 • Coordinating communication among experts during computer security emergencies
 • Helping to prevent future incidents

Increasing Complexity Increases Vulnerability

• Computing environment is enormously complex
 – Continues to increase in complexity
 – Number of possible entry points to a network expands continuously

Higher Computer User Expectations

• Computer help desks
 – Under intense pressure to provide fast responses to users’ questions
 – Sometimes forget to
 • Verify users’ identities
 • Check whether users are authorized to perform the requested action
• Computer users share login IDs and passwords

Expanding and Changing Systems Introduce New Risks

• Network era
 – Personal computers connect to networks with millions of other computers
 – All capable of sharing information
• Information technology
 – Ubiquitous
 – Necessary tool for organizations to achieve goals
 – Increasingly difficult to keep up with the pace of technological change
Increased Reliance on Commercial Software with Known Vulnerabilities

• Exploit
 – Attack on information system
 – Takes advantage of a particular system vulnerability
 – Due to poor system design or implementation

• Patch
 – “Fix” to eliminate the problem
 – Users are responsible for obtaining and installing patches
 – Delays in installing patches expose users to security breaches

Increased Reliance on Commercial Software with Known Vulnerabilities (continued)

• Zero-day attack
 – Takes place before a vulnerability is discovered or fixed

• U.S. companies rely on commercial software with known vulnerabilities

Number of Vulnerabilities Reported to CERT/CC

Types of Attacks

• Most frequent attack is on a networked computer from an outside source

• Types of attacks
 – Virus
 – Worm
 – Trojan horse
 – Denial of service
Viruses

• Pieces of programming code
• Usually disguised as something else
• Cause unexpected and usually undesirable events
• Often attached to files
• Deliver a “payload”

Viruses (continued)

• Does not spread itself from computer to computer
 – Must be passed on to other users through
 • Infected e-mail document attachments
 • Programs on diskettes
 • Shared files
• Macro viruses
 – Most common and easily created viruses
 – Created in an application macro language
 – Infect documents and templates

Worms

• Harmful programs
 – Reside in active memory of a computer
• Duplicate themselves
 – Can propagate without human intervention
• Negative impact of virus or worm attack
 – Lost data and programs
 – Lost productivity
 – Effort for IT workers

Cost Impact of Worms

<table>
<thead>
<tr>
<th>Name</th>
<th>Year released</th>
<th>Worldwide economic impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILOVEYOU</td>
<td>2000</td>
<td>$8.75 billion</td>
</tr>
<tr>
<td>Code Red</td>
<td>2001</td>
<td>$2.62 billion</td>
</tr>
<tr>
<td>Slammer</td>
<td>2001</td>
<td>$1.15 billion</td>
</tr>
<tr>
<td>Melissa</td>
<td>1999</td>
<td>$1.10 billion</td>
</tr>
</tbody>
</table>
Trojan Horses

• Program that a hacker secretly installs
• Users are tricked into installing it
• Logic bomb
 – Executes under specific conditions

Denial-of-Service (DoS) Attacks

• Malicious hacker takes over computers on the Internet and causes them to flood a target site with demands for data and other small tasks
 – The computers that are taken over are called zombies
• Does not involve a break-in at the target computer
 – Target machine is busy responding to a stream of automated requests
 – Legitimate users cannot get in
• Spoofing generates a false return address on packets

(continued)

• Ingress filtering - When Internet service providers (ISPs) prevent incoming packets with false IP addresses from being passed on
• Egress filtering - Ensuring spoofed packets don’t leave a network

Perpetrators

• Motives are the same as other criminals
• Different objectives and access to varying resources
• Different levels of risk to accomplish an objective
Classifying Perpetrators of Computer Crime

Hackers and Crackers

- **Hackers**
 - Test limitations of systems out of intellectual curiosity
- **Crackers**
 - Cracking is a form of hacking
 - Clearly criminal activity

<table>
<thead>
<tr>
<th>Type of Perpetrator</th>
<th>Objectives</th>
<th>Resources Available to Perpetrator</th>
<th>Level of Risk Acceptable to Perpetrator</th>
<th>Frequency of Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hacker</td>
<td>Test limits of system and gain publicity</td>
<td>Limited</td>
<td>Minimal</td>
<td>High</td>
</tr>
<tr>
<td>Cracker</td>
<td>Cause problems, steal data, and corrupt systems</td>
<td>Limited</td>
<td>Moderate</td>
<td>Medium</td>
</tr>
<tr>
<td>Insider</td>
<td>Make money and disrupt company's information systems</td>
<td>Knowledge of systems and passwords</td>
<td>Moderate</td>
<td>Low</td>
</tr>
</tbody>
</table>

Malicious Insiders

- Top security concern for companies
- Estimated 85 percent of all fraud is committed by employees
- Usually due to weaknesses in internal control procedures
- Collusion is cooperation between an employee and an outsider
- Insiders are not necessarily employees
 - Can also be consultants and contractors
- Extremely difficult to detect or stop
 - Authorized to access the very systems they abuse

Industrial Spies

- Illegally obtain trade secrets from competitors
- Trade secrets are protected by the Economic Espionage Act of 1996
- Competitive intelligence
 - Uses legal techniques
 - Gathers information available to the public
- Industrial espionage
 - Uses illegal means
 - Obtains information not available to the public
Cybercriminals

• Hack into corporate computers and steal
• Engage in all forms of computer fraud
• Chargebacks are disputed transactions
• Loss of customer trust has more impact than fraud
• To reduce the potential for online credit card fraud sites:
 – Use encryption technology
 – Verify the address submitted online against the issuing bank
 – Request a card verification value (CVV)
 – Use transaction-risk scoring software

Cybercriminals (continued)

• Smart cards
 – Contain a memory chip
 – Are updated with encrypted data every time the card is used
 – Used widely in Europe
 – Not widely used in the U.S.

Legal Overview: The Check Clearing for the 21st Century Act

• Requires that banks accept paper documents
 – In lieu of original paper checks
 – Speeds clearing of checks
• New opportunities for check fraud
 – Bankers don’t fully realize the extent of possible increased fraud

Cyberterrorists

• Intimidate or coerce governments to advance political or social objectives
• Launch computer-based attacks
• Seek to cause harm
 – Rather than gather information
• Many experts believe terrorist groups pose only a limited threat to information systems
Reducing Vulnerabilities

- Security
 - Combination of technology, policy, and people
 - Requires a wide range of activities to be effective
- Assess threats to an organization’s computers and network
- Identify actions that address the most serious vulnerabilities
- Educate users
- Monitor to detect a possible intrusion
- Create a clear reaction plan

Risk Assessment

- Organization’s review of:
 - Potential threats to computers and network
 - Probability of threats occurring
- Identify investments that can best protect an organization from the most likely and serious threats
- Reasonable assurance
- Improve security in areas with:
 - Highest estimated cost
 - Poorest level of protection

Risk Assessment for a Hypothetical Company

<table>
<thead>
<tr>
<th>Risk</th>
<th>Estimated probability of such an event occurring</th>
<th>Estimated cost of a successful attack</th>
<th>Probability x cost – expected cost impact</th>
<th>Assessment of current level of protection</th>
<th>Relative priority to be fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denial-of-service attack</td>
<td>80%</td>
<td>$500,000</td>
<td>$400,000</td>
<td>Poor</td>
<td>1</td>
</tr>
<tr>
<td>E-mail attachment with harmful worm</td>
<td>70%</td>
<td>$200,000</td>
<td>$140,000</td>
<td>Poor</td>
<td>2</td>
</tr>
<tr>
<td>Harmful virus</td>
<td>90%</td>
<td>$50,000</td>
<td>$45,000</td>
<td>Good</td>
<td>3</td>
</tr>
<tr>
<td>Invoice and payment fraud</td>
<td>10%</td>
<td>$200,000</td>
<td>$20,000</td>
<td>Excellent</td>
<td>4</td>
</tr>
</tbody>
</table>

Establishing a Security Policy

- A security policy defines
 - Organization’s security requirements
 - Controls and sanctions needed to meet the requirements
- Delineates responsibilities and expected behavior
- Outlines what needs to be done
 - Not how to do it
- Automated system policies should mirror written policies
Establishing a Security Policy (continued)

- Trade-off between
 - Ease of use
 - Increased security
- Areas of concern
 - E-mail attachments
 - Wireless devices
- VPN uses the Internet to relay communications but maintains privacy through security features
- Additional security includes encrypting originating and receiving network addresses

Educating Employees, Contractors, and Part-Time Workers

- Educate users about the importance of security
 - Motivate them to understand and follow security policy
- Discuss recent security incidents that affected the organization
- Help protect information systems by:
 - Guarding passwords
 - Not allowing others to use passwords
 - Applying strict access controls to protect data
 - Reporting all unusual activity

Prevention

- Implement a layered security solution
 - Make computer break-ins harder
- Firewall
 - Limits network access
- Antivirus software
 - Scans for a specific sequence of bytes
 - Known as the virus signature
 - Norton Antivirus
 - Dr. Solomon’s Antivirus from McAfee

Firewall Protection
Popular Firewall Software for Personal Computers

<table>
<thead>
<tr>
<th>Software</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norton Personal Firewall</td>
<td>Symantec</td>
</tr>
<tr>
<td>ZoneAlarm Pro</td>
<td>Zone Labs</td>
</tr>
<tr>
<td>Personal Firewall</td>
<td>McAfee</td>
</tr>
<tr>
<td>BlackICE Defender</td>
<td>Network Ice Corp.</td>
</tr>
</tbody>
</table>

Prevention (continued)

- Antivirus software
 - Continually updated with the latest virus detection information
 - Called definitions
- Departing employees
 - Promptly delete computer accounts, login IDs, and passwords
- Carefully define employee roles
- Create roles and user accounts

Prevention (continued)

- Keep track of well-known vulnerabilities
 - SANS (System Administration, Networking, and Security) Institute
 - CERT/CC
- Back up critical applications and data regularly
- Perform a security audit

Detection

- Detection systems
 - Catch intruders in the act
- Intrusion detection system
 - Monitors system and network resources and activities
 - Notifies the proper authority when it identifies
 - Possible intrusions from outside the organization
 - Misuse from within the organization
 - Knowledge-based approach
 - Behavior-based approach
Detection (continued)

• Intrusion prevention systems (IPSs)
 – Prevent attacks by blocking
 • Viruses
 • Malformed packets
 • Other threats
 – Sits directly behind the firewall

Honeypot

• Provides would-be hackers with fake information about the network
• Decoy server
• Well-isolated from the rest of the network
• Can extensively log activities of intruders

Response

• Response plan
 – Develop well in advance of any incident
 – Approved by
 • Legal department
 • Senior management
• Primary goals
 – Regain control
 – Limit damage

Response (continued)

• Incident notification defines
 – Who to notify
 – Who not to notify
• Security experts recommend against releasing specific information about a security compromise in public forums
• Document all details of a security incident
 – All system events
 – Specific actions taken
 – All external conversations
Response (continued)

• Act quickly to contain an attack
• Eradication effort
 – Collect and log all possible criminal evidence from the system
 – Verify necessary backups are current and complete
 – Create new backups
• Follow-up
 – Determine how security was compromised
 • Prevent it from happening again

Response (continued)

• Review
 – Determine exactly what happened
 – Evaluate how the organization responded
• Capture the perpetrator
• Consider the potential for negative publicity
• Legal precedent
 – Hold organizations accountable for their own IT security weaknesses

Summary

• Ethical decisions regarding IT security include determining which information systems and data most need protection
• 65-fold increase in the number of reported IT security incidents from 1997 to 2003
• Most incidents involve a:
 – Virus
 – Worm
 – Trojan horse
 – Denial-of-service

Summary (continued)

• Perpetrators include:
 – Hackers
 – Crackers
 – Industrial spies
 – Cybercriminals
 – Cyberterrorists
Summary (continued)

- Key elements of a multilayer process for managing security vulnerabilities include:
 - Assessment
 - User education
 - Response plan