
Routing with virtual 

coordinates

04/17/06



Overview of locationOverview of location--based routingbased routing

• Greedy routing + face routing on a planar 

subgraph.

t

s



Geographical forwardingGeographical forwarding

• How robust is geographical forwarding to location 
errors?

– Accurate location information is hard to obtain.

• Face routing is problematic in practice.

– Overload nodes on the boundaries of “holes”.

• Hope to establish “virtual coordinates” so that 
greedy routing does not get stuck.



PapersPapers

Virtual coordinates:

• Ananth Rao, Christos Papadimitriou, Scott Shenker, 
and Ion Stoica, Geographical routing without 
location information, Proc. MobiCom'03, pages 
96 - 108, 2003.

• James Newsome, Dawn Song, GEM: Graph 
EMbedding for Routing and Data-Centric 
Storage in Sensor Networks Without 
Geographic Information, Proc. Sensys’03.



Approach I:Approach I:

Rubber band representationRubber band representation



Goal: find a good layout of the Goal: find a good layout of the 

networknetwork

• Let’s just try to find a reasonable layout of the 
network.

• What is a good layout?

• Stretch the network out.

• Then try the geographical routing on this “virtual”

coordinates.



Rubber band drawing of a graphRubber band drawing of a graph

• All edges are rubber bands.

• Nail down some nodes S in 
the plane, let the graph go.

• Theorem: the algorithm 
converges to a unique state –
rubber band representation
extending S.

• Recall the mass-spring model 
in localization…

Peterson graph with 

one pentagon nailed 

down.



Rubber band drawing of a graphRubber band drawing of a graph

• The rubber band algorithm 
minimizes the total energy:

• Claim: E(x) is convex.

• When any xi goes to infinity, 
E(x) goes to infinity. So we 
have a unique global 
minimum.

Peterson graph with 

one pentagon nailed 

down.



Rubber band drawing of a graphRubber band drawing of a graph

• How does the rubber band 
representation look like?

• ∂E(x)/∂xi =0.

• The rubber band connecting 

i and j pulls i with force xj - xi. 

The total force acting on xi

is 0.

• The graph is at equilibrium.

Peterson graph with 

one pentagon nailed 

down.

neighbors



Rubber band drawing of a graphRubber band drawing of a graph

1. Every free node is at the center of 
gravity of its neighbors.

2. no reflex vertices.

Peterson graph with 

one pentagon nailed 

down.



More examplesMore examples



Rubber band algorithmRubber band algorithm

• Recall the mass-spring model.

• First we assume nodes on the boundary know 

their location.

• Fix the nodes on the outer boundary.

• Iterative algorithm:

– Every node moves to the center of gravity of its 
neighbors.

• Until no node moves more than distance δ.



A network with 3200 nodesA network with 3200 nodes

• Greedy routing success rate: 0.989, avg path 
length 16.8



Perimeter nodes are known (10 Perimeter nodes are known (10 

iterations)iterations)



Perimeter nodes are known (100 Perimeter nodes are known (100 

iterations)iterations)



Perimeter nodes are known (1000 Perimeter nodes are known (1000 

iterations)iterations)
• Greedy routing success rate: 0.993, avg path 

length 17.1



Resiliency of the rubber band approachResiliency of the rubber band approach

• Greedy routing success rate: 0.981, avg path 
length 17.3



Resiliency of the rubber band approachResiliency of the rubber band approach

• Greedy routing success rate: 0.99, avg path 
length 17.1



Perimeter nodesPerimeter nodes

• Need nodes on the perimeter to “stretch” out the net.

• First assume we know nodes on the perimeter, but not the 
locations.

1. Each perimeter sends hello messages.

2. All the nodes record hop counts to each perimeter node.

3. The hop count between every pair of perimeter node is 
broadcast to all perimeter nodes.

4. Embed perimeter nodes in the plane.



Perimeter nodesPerimeter nodes

1. The embedding only gives relative positions: include 2 
bootstrapping beacons in the embedding of perimeters.

• Use the center of gravity as origin.

• 1st bootstrap node defines the positive x-axis.

• 2nd bootstrap node defines the positive y-axis.

2. Non-perimeter nodes actually have the distances to all 
perimeter nodes. So they can also embed themselves.

• Gives good initial positions for the rubber band algorithm.

3. If a perimeter node doesn’t receive the pairwise hop counts 
among all perimeter nodes, then it is not counted in the 
calculation. 



How to find perimeter nodes?How to find perimeter nodes?

• The bootstrapping nodes send hello messages to everyone.

• The node which is the farthest among all its 2-hop neighbors 
will identify itself as a perimeter node.



Success rate of greedy routingSuccess rate of greedy routing

• Success rate on virtual coordinates is comparable with true 
coordinates, when the sensors are dense and uniform.



Weird ShapesWeird Shapes



ObstaclesObstacles

• Success rate on virtual coordinates degrades when there are 
a lot of obstacles, but better than true coordinates.



ConclusionsConclusions

• Geographical forwarding is quite robust to localization 
errors, or reasonable virtual coordinates.

• Geographical forwarding can easily scale to tens of 
thousands of nodes with acceptable overhead.

• For dense uniform sensor layout, we can eliminate 

the need for face routing altogether.

• Virtual coordinates respect the connectivity better 
than the true coordinates.



Approach II:Approach II:

Embed a spanning tree in polar Embed a spanning tree in polar 

coordinate systemcoordinate system



Embed a tree in polar coordinate Embed a tree in polar coordinate 

systemsystem

• Start from any node as root, 
flood to find the shortest path 

tree.

• Assign polar ranges to each 

node in the tree. 

– The range of a node is divided 
among its children. 

– The size of the range is 
proportional to the size of its 
subtree.

• Order the subtrees that align 
with the sensor connectivity.



Embed a tree in polar coordinate Embed a tree in polar coordinate 

systemsystem

• Order the subtrees that align 
with the sensor connectivity. 

– Three reference nodes flood the 

network. Each node knows the hop 

count to each reference.

– Each node embed itself with 

respect to the references. 

– A node’s position is defined as the 

center of mass of all the nodes in 

its subtree.

– This will provide an angular 

ordering of all the children. 



Routing on a treeRouting on a tree

• Route to the common ancestor of the source and 
destination.

– Check whether the destination range is included in the 
range of the current node.

– If not, go to the parent.

– Otherwise go to the corresponding child.

• Root is the bottleneck.

• Path may be long.



Routing on a treeRouting on a tree

• Be a little smarter: store a local routing table that keeps the 
ranges of up to k-hop neighbors. � find shortcuts.

• Virtual Polar Coordinate Routing: check the neighborhood, find 
the node that is closer to the destination.

If the upper/lower bound is closer to the destination. 



Load balancingLoad balancing

• Root is still the bottleneck even for smart routing.

Shortest path routing, still not 

the most load balanced routing



SummarySummary

• Replace the “real” coordinates by “virtual”
coordinates for routing.

• Goal: no need for accurate location information.


