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Some slides are made by Savvides



Find where the sensor is...

Location information is important.
1. Devices need to know where they are.
«  Sensor tasking: turn on the sensor near the window...
2.  We want to know where the data is about.
A sensor reading is too hot — where?

3. It helps infrastructure establishment, such as geographical
routing and sensor coverage.
* Intruder detection;
« Localized geographical routing.



Papers

« Multi-lateration:

 [Savvides01] A. Savvides, C.-C. Han, and
M. B. Strivastava. Dynamic fine-grained
localization in ad-hoc networks of
sensors. Proc. MobiCom 2001.

« [Savvides03] A. Savvides, H. Park, and M.
B. Strivastava. The n-hop multilateration
primitive for node localization problems,
Mobile Networks and Applications, Volume
8, Issue 4, 443-451, 2003.




Multilateration: use plane geometry



Base Case: Atomic Multilateration
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Base Station 1
u
Base Station 3

Base Station 2

Base stations advertise their coordinates & transmit a reference
signal

PDA uses the reference signal to estimate distances to each of the
base stations



Base Case: Atomic Multilateration

« Distance measurements are noisy!
« Solve an optimization problem: minimize the mean square error.
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Problem Formulation

k beacons at positions (%, ¥;)
Assume node 0 has position (X5 ¥o)

Distance measurement between node 0 and
beaconiis r

Error:

2 2
fi=r _\/('xi —X,)" + (Y, — V)
The objective function is

F(x,,y,)=min ) f?

This is a non-linear optimization problem



Linearization and Min Mean Square
Estimate

 Ideally, we would like the error to be 0O
fi=r=x=x)" +(y,—y,)" =0

* Re-arrange:
(X + Yo )+ X, (=2x)+ ¥, (=2y,) -,

« Subtract the last equation from the previous ones
to get rid of quadratic terms.

2 2

I

_ 2
==X —)

25, (X, = X)+2y,(y, = y.) =1 =1 =X} =y} +x. + Y]

l

 Note that this is linear.



Linearization and Min Mean Square
Estimate

 In general, we have an over-constrained linear
system

Ax=0>b

2 2 2 2 2 2] _ .
H=lh =X =) X% T W% 20, —x) 2y —y)

2 2 2 2 2 2
7"2 _rk _XZ_y2+xk+yk 2(xk—x2) 2(yk_y2)

A= |
_rkz—l ~ rkz _xlg—l — y;f_l +x1§ + ylf_ 200 —x) 200 =)
X
X = / A ||x| = |b
Yo _




Solve using the Least Square
Equation
The linearized equations in matrix form become
Ax=Db

Now we can use the least squares equation to
compute an estimation.

x=(ATA) " ATb



How to solve it in an embedded system?

« Check conditions
— Beacon nodes must not lie on the same line

* For ToA, TDoA, how to solve for the speed of
sound?



Acoustic case: Also solve for the speed

of sound
With at least 4 beacons, 2
2 2
Ji=st, —\/(x—x) +(y; = Yo) 1
i i I 0 i 0
Speed of soﬁnd/ T Time measurement \
This can be linearized to the form P=12.k \.
4
where Ax=>b 3
—x eyt | [ 2w 200y s | Tk
b —x22—y22.+x,f+y,f A= z(xk:_x2) 2(yk:_)’2) fzgo_fzzo x=|v,
2
)
| — Xe = Voo X+ y,f_ 200 = X)) 20V = Vi) oo _t(zk—l)o_ -

MMSE Solution: X=(A"A)"A"b



The Node Localization Problem

Unkown Location

Beacon
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Randomly Deployed Sensor Network

distance measurements



Solving over multiple hops

e |terative multilateration

— a node with at least 3 neighboring beacons estimates its
position and becomes a beacon.

— lterate until all nodes with 3 beacons are localized.
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Beacon node
(known position)

Unknown node
(unknown position)

Connectivity matters! Each node needs at least 3 neighbors.



lterative multilateration: how many
beacons?

* n nodes deployed randomly in a square of side L,
« P(d)=Pr{a node x has degree d}="

Probability that one node falls inside
the transmission range of x?

TR*
p p—
Lz
Binomial distribution

/ n-d-1 n—1
P(d)=p*-(1-p)"" ( ]

Transmission d
range has
radius R




lterative multilateration: how many
beacons?

« When n tends to infinity, the binomial distribution
converges to a Poisson distribution.

Probability that one node falls inside
the transmission range of x?

2
2
L
Binomial distribution

/ N-d-1 Poisson distributionld
P(d)="—-¢"
Transmission d!
range has

radius R



lterative multilateration: how many
beacons?

ﬂd ) n—1 .
P(d)="—-¢" Pd)=1-) P(i
d!
100 by 100 field T |
Sensor range:10 ol
Probability of anode !
with 0,1,2,>3 osf |
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With 200 nodes, A }h
P(=> 3) is about 95%. D-ﬂ-f,’ b e



lterative multilateration: how many
beacons?

With 200 nodes,
P(= 3) is about 95%.
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Problems of iterative Multilateration

Problems
1. Requires a large fraction of beacons.
2. Error accumulates.

3. It gets stuck --- not all nodes with 3 or more
neighbors can be resolved.



Problems of iterative Multilateration

Problems
1. Requires a large fraction of beacons.
2. Error accumulates. € Mass-spring optimization.

3. It gets stuck --- not all nodes with 3 or more
neighbors can be located. € Collaborative
multilateration



Collaborative Multilateration: use joint
optimization



Collaborative Mutlilateration

— All available measurements are used as
constraints

.\ nown position
././'.\0,\./.‘\\ Krownp

Unknown position

— Solve for the positions of multiple unknowns
simultaneously

— Joint optimization can get better results compared
with separate optimizations.



Problem Formulation

f2,3 =3 _\/(xz _x3)2 +(y, _)’3)2

Fos = s =0t —x5)2 + (0, = ¥5)° 5
fis =r4,3—\/(x4—x3)2+(y4—y3)2 .>3/‘4<
fos =15 =Nt =) + (3, = 35)? , ¢
fir =1 =G =)+ (0, =y,

The objective function is

. 2
F(X3, y39x49 y4) — man]Ci,j
Start from some initial estimates, then use a Kalman Filter.



Initial Estimates

« Use the distance to a beacon
as bounds onthe xand y
coordinates

i
a a

beacon




Initial Estimates (Phase 2)

« Use the distance to a beacon
as bounds onthe xandy
coordinates

Do the same for beacons
that are multiple hops away

« Select the most constraining
bounds

U 1s between [Y-(b+c)] and [X+a]



Initial Estimates (Phase 2)

Use the distance to a beacon
as bounds on the x and y
coordinates

Do the same for beacons that
are multiple hops away

Select the most constraining

bounds

Set the center of the
bounding box as the initial
estimate
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Initial Estimates (Phase 2)

« Initial estimates give %
rough location
information. /

« Use Kalman Filter to
refine. A

— Start with prior info. /7
— Incorporate new

measurement info.
— Improve the current state F%@{

— Details omitted. T |




Collaborative Multilateration

Collaborative Multilateration

Challenges
Computation constraints
Communication cost




Satisfy Global Constraints with Local
Computation
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Multilateration

Need beacons.

lterative multi-lateration.
—  Error accumulates.
—  May get stuck when the density is low.

Collaborative multi-lateration.

—  Still requires a large number of beacon nodes, especially
when the network is sparse.

— Kalman filter computation is expensive on large networks.



Summary

Tri-laterations
Multi-trilaterations.

Major issue

How to deal with noises?

How to propagate location information?
Next class

Mass-spring optimization to reduce error.
In-correct global layout.



