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Find where the sensor isFind where the sensor is……

• Location information is important.

1. Devices need to know where they are.

• Sensor tasking: turn on the sensor near the window…

2. We want to know where the data is about.

• A sensor reading is too hot – where?

3. It helps infrastructure establishment, such as geographical 
routing and sensor coverage.

• Intruder detection;

• Localized geographical routing.



PapersPapers

• Multi-lateration:

• [Savvides01] A. Savvides, C.-C. Han, and 
M. B. Strivastava. Dynamic fine-grained 
localization in ad-hoc networks of 
sensors. Proc. MobiCom 2001. 

• [Savvides03] A. Savvides, H. Park, and M. 
B. Strivastava. The n-hop multilateration
primitive for node localization problems, 
Mobile Networks and Applications, Volume 
8, Issue 4, 443-451, 2003.



MultilaterationMultilateration: use plane geometry: use plane geometry



Base Case: Atomic Base Case: Atomic MultilaterationMultilateration

• Base stations advertise their coordinates & transmit a reference
signal

• PDA uses the reference signal to estimate distances to each of the 
base stations

Base Station 1

Base Station 3

Base Station 2
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Base Case: Atomic Base Case: Atomic MultilaterationMultilateration

• Distance measurements are noisy!

• Solve an optimization problem: minimize the mean square error.



Problem FormulationProblem Formulation

• k beacons at positions 

• Assume node 0 has position

• Distance measurement between node 0 and 
beacon i is  

• Error:

• The objective function is

• This is a non-linear optimization problem
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Linearization andLinearization and Min Mean Square Min Mean Square 

EstimateEstimate

• Ideally, we would like the error to be 0

• Re-arrange:

• Subtract the last equation from the previous ones 

to get rid of quadratic terms.

• Note that this is linear.
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Linearization andLinearization and Min Mean Square Min Mean Square 

EstimateEstimate

• In general, we have an over-constrained linear 
system
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Solve using the Least Square Solve using the Least Square 

EquationEquation
The linearized equations in matrix form become

Now we can use the least squares equation to 

compute an estimation.
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How to solve it in an embedded system?How to solve it in an embedded system?

• Check conditions

– Beacon nodes must not lie on the same line

• For ToA, TDoA, how to solve for the speed of 

sound?



Acoustic case: Also solve for the speed Acoustic case: Also solve for the speed 

of soundof sound

With at least 4 beacons, 

This can be linearized to the form

where
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The Node Localization ProblemThe Node Localization Problem

Beacon

Unkown Location

Randomly Deployed Sensor Network

Beacon nodes

• Localize nodes in an ad-hoc
multihop network

• Based on a set of inter-node 

distance measurements



Solving over multiple hopsSolving over multiple hops

• Iterative multilateration

– a node with at least 3 neighboring beacons estimates its 
position and becomes a beacon.

– Iterate until all nodes with 3 beacons are localized.

Beacon node
(known position)

Unknown node
(unknown position)

Connectivity matters! Each node needs at least 3 neighbors.



Iterative Iterative multilaterationmultilateration: how many : how many 

beacons?beacons?

• n nodes deployed randomly in a square of side L, 

• P(d)=Pr{a node x has degree d}=?
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Iterative Iterative multilaterationmultilateration: how many : how many 

beacons?beacons?

• When n tends to infinity, the binomial distribution 
converges to a Poisson distribution.
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Iterative Iterative multilaterationmultilateration: how many : how many 

beacons?beacons?
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Probability of a node 

with 0, 1, 2, ≥≥≥≥ 3
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With 200 nodes, 

P(≥≥≥≥ 3) is about 95%.



Iterative Iterative multilaterationmultilateration: how many : how many 

beacons?beacons?

With 200 nodes, 

P(≥≥≥≥ 3) is about 95%.

With 200 nodes, we 

need about 50~60 

beacons to localize 

about 90% of the 
nodes. That’s ¼ of 

the total number of 

nodes.



Problems of iterative MultilaterationProblems of iterative Multilateration

Problems

1. Requires a large fraction of beacons.

2. Error accumulates.

3. It gets stuck --- not all nodes with 3 or more 

neighbors can be resolved. 



Problems of iterative MultilaterationProblems of iterative Multilateration

Problems

1. Requires a large fraction of beacons.

2. Error accumulates. ���� Mass-spring optimization.

3. It gets stuck --- not all nodes with 3 or more 

neighbors can be located.  � Collaborative 
multilateration



Collaborative Collaborative MultilaterationMultilateration: use joint : use joint 

optimizationoptimization



Collaborative Collaborative MutlilaterationMutlilateration

– All available measurements are used as 
constraints

– Solve for the positions of multiple unknowns 
simultaneously

– Joint optimization can get better results compared 
with separate optimizations.

Known position

Unknown position



Problem FormulationProblem Formulation
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Initial EstimatesInitial Estimates

• Use the distance to a beacon 
as bounds on the x and y 
coordinates

a

a a
beacon

U



Initial Estimates (Phase 2)Initial Estimates (Phase 2)

• Use the distance to a beacon 
as bounds on the x and y 
coordinates

• Do the same for beacons 
that are multiple hops away

• Select the most constraining 
bounds

a

b

c

b+c b+c

X

Y

U

U is between  [Y-(b+c)] and [X+a]



Initial Estimates (Phase 2)Initial Estimates (Phase 2)

• Use the distance to a beacon 
as bounds on the x and y 
coordinates

• Do the same for beacons that 
are multiple hops away

• Select the most constraining 
bounds

• Set the center of the 
bounding box as the initial 
estimate

a

a a

b

c

b+c b+c

X

Y

U



Initial Estimates (Phase 2)Initial Estimates (Phase 2)

• Initial estimates give 
rough location 
information.

• Use Kalman Filter to 
refine.
– Start with prior info.
– Incorporate new 

measurement info.
– Improve the current state.
– Details omitted.



Collaborative MultilaterationCollaborative Multilateration

Collaborative Multilateration

Challenges
Computation constraints
Communication cost
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Satisfy Global Constraints with Local Satisfy Global Constraints with Local 

ComputationComputation

� From SensorSim

simulation

� 40 nodes, 4 beacons

� IEEE 802.11 MAC

� 10Kbps radio

� Average 6 neighbors

per node



MultilaterationMultilateration

• Need beacons.

• Iterative multi-lateration.

– Error accumulates.

– May get stuck when the density is low.

• Collaborative multi-lateration. 

– Still requires a large number of beacon nodes, especially 
when the network is sparse.

– Kalman filter computation is expensive on large networks.



SummarySummary

• Tri-laterations

• Multi-trilaterations.

• Major issue

– How to deal with noises?

– How to propagate location information?

• Next class

– Mass-spring optimization to reduce error.

– In-correct global layout.


