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Improve the accumulated localization error by a global
iterative algorithm ---

Mass-spring localization



Mass-spring system

Nodes are “masses”, edges are “springs”.

Length of the spring equals the distance measurement.
Springs put forces to the nodes.

Nodes move.

Until the system stabilizes.




Mass-spring system

Node n's current estimate of its position: p..

The estimated distance d;; between n; and n..
The measured distance r; between n; and n..
Force: F,,=d;- r;, along the direction pp..




Mass-spring system

Total force onn: Fi=2 F,.

Move the node n, by a small distance (proportional
to F)).

Recurse.




Mass-spring system

Total energy n;: E=2% E;= 2 (d;- r))*
Make sure that the total energy E=X E. goes down.

Stop when the force (or total energy) is small
enough.




Mass-spring system

« Naturally a distributed algorithm.
*  Problem: may stuck in local minima.

 Need to start from a reasonably good initial
estimation, e.g., the iterative multi-lateration.

(a) Ground truth (b) Alternate realization




For noisy measurements, we use optimization methods...
Yet optimization does not solve ---

Ambiguity in localization



Ambiguity in localization

« Same distances, different realization.

(b) Alternate realization




Continuous deformation

 Nodes move continuously without violating
the distance constraints.




Flip

* No continuous deformation, but subjects to
global flipping.




Discontinuous flex ambiguity

Remove AD, flip ABD up, insert AD.
No continuous deformation in between.

But both are valid realization of the
distances.
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Rigidity theory

Given a system of rigid bars and hinges in 2D, does it have a
continuous deformation? Multiple realizations?



Rigidity theory

« Given a set of rigid bars connected by
hinges, rigidity theory studies whether you
can move them continuously.
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Not rigid

b
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Rigid=
No continuous
deformation

idity and global rigidity

Globally rigid=
unique realization

b



Intuition

How many distance constraints are necessary to limit a
framework to only trivial motion?

How many edges are necessary for a graph to be rigid?

Total degrees of freedom: 2n



How many edges are necessary to make a graph of n nodes
rigid?

Each edge can remove a single degree of freedom

Rotations and translations will always be possible, so at
least 2n-3 edges are necessary for a graph to be rigid.



Are 2n-3 edges sufficient?

n=3,2n-3=3 n=4,2n-3=5 n=>52n-3="7
yes i;

yes no



Further intuition

Need at least 2n-3 “well-distributed” edges.

If a subgraph has more edges than necessary,
some edges are redundant.

Non-redundant edges are independent.

Each independent edge removes a degree of
freedom.

Therefore, 2n-3 independent edges guarantee
rigidity.



Laman condition

Laman condition:

A graph is generically minimally rigid in 2D if and
only if it has 2n-3 edges and no subgraph of k
vertices has more than 2k-3 edges.



Henneberg constructions

Henneberg constructions (Tay-Whiteley): a Laman
graph can be constructed inductively by adding one
vertex at a time:

Start with an edge
At each step, add a new vertex

Type | step: join the vertex to two old vertices via two
edges

Type |l step: join the vertex to three old vertices with at
least one edge in between, via three edges. Remove
an old edge between the three endpoints.



Henneberg constructions

* Type | step: join the vertex to two old vertices via two
edges

« Type |l step: join the vertex to three old vertices with at
least one edge in between, via three edges. Remove
an old edge between the three endpoints.
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Global rigidity

Solution:

G must rigid

G must be 3-connected

G must be redundantly rigid:
It must remain rigid upon
removal of any single edge




Papers

« D. Moore, J. Leonard, D. Rus, S. Teller, Robust
distributed network localization with noisy
range measurements, Proc. ACM SenSys 2004.

« Anchor-free method.
« Rigidity-aware.



Trilateration without noise

If three anchors are not on the same line,
trilateration with accurate distance
measurements gives a unique location.
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Trilateration with noise...

With noisy measurements, trilateration can
have flip ambiguity.
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Use quadrilaterals

* Four nodes with fixed pair-wise distances

« ltis the smallest 3-connected redundantly
rigid graph =» globally rigid.
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Robust quadrilaterals

 |f measurement noise is bounded, the
qguadrilateral has no incorrect flip.

Incorrect flip: can’t
verify whether C or C’
IS correct.
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Robust quadrilaterals

 |f measurement noise is bounded, the
qguadrilateral has no incorrect flip.

Minimize the error by choosing
T 0=m/2-26.

d, =dapsin’ @
Rbbust quadrilateral satisfies

d_<bsin’ @

,*Where b is the shortest side and 6
~ is the smallest angle.




Clusters

* Robust quads that share three nodes can
be merged into clusters.

« The cluster is still a 3-connected
redundantly rigid graph =» globally rigid.

« Actually it has 3n-6 edges.




Three phases

« Cluster localization
— Each node x find its local robust quadrilaterals.
— Merge them to a robust cluster around x.

« (optional) cluster optimization
— Refine the nodes’ location inside a cluster.

* Cluster transformation
— Glue the local quadrilaterals together
— Transformation to a global coordinate system.



Algorithm phase I: cluster localization

1.

o

Each node x gets the distance measurements
between each pair of 1-hop neighbors.

|dentify the set of robust quadrilaterals.
Merge the quads if they share 3 nodes.

Estimate the positions of as many nodes as
possible by iterative trilateration.

Note: Local coordinate system rooted at x.




Algorithm phase ll: cluster
optimization
For each cluster around node x, refine the

position estimates, for example, by mass-
spring relaxation.

Optional.



Algorithm phase lll: cluster
transformation

Align neighboring local coordinates systems.

Find the set of nodes in common between two
clusters.

Compute the translation, rotation that best align
them.



Simulations

« 183 nodes uniformly inside a building.

«  Connectivity is only between nodes not obstructed
by walls.




Cluster success rate R (percent)

Simulations

«  Cluster success rate v.s. node degree.
« Each plot represents a simulation run.

{a:] PLOTS OF CLUSTER SUCCESS RATE, R, VERSUS NODE DEGREE FOR THE BUILDING ENVIRONMENT
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Algorithm properties

Nodes not included in the robust quadrilaterals are
not localized.
A wrong location is worse than no location.

Even as noise goes to 0, avg degree > 10 to
achieve 100% localization.

Not good for sparse networks.

The avg degree = 6 for best throughput of the
network.



Demo

« Localize mobile nodes

« Show a video clip



Observations

Localization algorithm performs poorly when
the graph is sparse.

Rigidity is an issue in anchor-free methods,
or anchor-based methods with noisy
measurements.



