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On a rainy dayOn a rainy day

• Observe the raindrops 
falling on the pavement. 
Initially the wet regions 
are isolated and we can 
find a dry path. Then after 
some point, the wet 
regions are connected 
and we can find a wet 
path.

• There is a critical density 
where sudden change 
happens.



Phase transitionPhase transition

• In physics, a phase transition is the transformation of a 
thermodynamic system from one phase to another. The 
distinguishing characteristic of a phase transition is an 
abrupt sudden change in one or more physical properties, in 
particular the heat capacity, with a small change in a 
thermodynamic variable such as the temperature. 

• Solid, liquid, and gaseous phases.

• Different magnetic properties.

• Superconductivity of medals.

• This generally stems from the interactions of an extremely 
large number of particles in a system, and does not appear in 
systems that are too small.



Bond PercolationBond Percolation

• An infinite grid Z2, with each link to be “open” (appear) with 
probability p independently. Now we study the connectivity of 
this random graph.

p=0.25



Bond PercolationBond Percolation

• An infinite grid Z2, with each link to be “open” (appear) with 
probability p independently. Now we study the connectivity of 
this random graph.

p=0.75



Bond PercolationBond Percolation

• An infinite grid Z2, with each link to be “open” (appear) with 
probability p independently. Now we study the connectivity of 
this random graph.

p=0.49

No path from 
left to right



Bond PercolationBond Percolation

• An infinite grid Z2, with each link to be “open” (appear) with 
probability p independently. Now we study the connectivity of 
this random graph.

p=0.51

There is a path 
from left to 
right!



Bond PercolationBond Percolation

• There is a critical threshold p=0.5. 

The probability 
that there is a 
“bridge” cluster 
that spans from 

left to right.



Bond PercolationBond Percolation

• There is a critical threshold p=0.5.

• When p>0.5, there is a unique infinite size cluster almost 
always.

• When p<0.5, there is no infinitely size cluster. 

• When p=0.5, the critical value, there is no infinite cluster.

• Percolation theory studies the phase transition in random 
structures. 



Main problems in percolationMain problems in percolation

• What is the critical threshold for the appearance of some 
property, e.g., an infinite cluster?

• What is the behavior below the threshold? We know all 
clusters are finite. How large are they? Distribution of the 
cluster size?

• What is the behavior above the threshold? We know there 
exists an infinite cluster? Is it unique? What is the asymptotic
size with respect to p and n (the network size)?

• What is the behavior at the threshold? Is there an infinite 
cluster or not? What is the size of the clusters?



Examples of PercolationExamples of Percolation

• Spread of epidemics, virus infection on the Internet.

– Each “sick” node has probability p to infect a neighbor node.

– Denote by p the contagious parameter. If p is above the 

percolation threshold, then the disease will spread world wide.

– The real model is more complicated, taking into account the time

variation, healing rate, etc.

• Gossip-based routing, content distribution in P2P 
network, software upgrade.

– The graph is important in deciding the critical value. 

– An interesting result is about the “scale-free” graphs (also called 

power-law) that model the topology of the Internet or social 

network: in one of such models (random attachment with 

preferential rule), the percolation threshold vanishes.



More examplesMore examples

• Connectivity of unreliable networks. 

– Each edge goes down randomly. 

– Is there a path between any two nodes, with high probability?

– Resilience or fault tolerance of a network to random failures.

• Random geometric graph, density of wireless nodes (or, 
critical communication range).

– Wireless nodes with Poisson distribution in the plane.

– Nodes within distance r are connected by an edge.

– There is a critical threshold on the density (or the communication 

range) such that the graph has an infinitely large connected 

component.



Site PercolationSite Percolation

• An infinite grid Z2, with each vertex to be “open” (appear) with 
probability p independently. Now we study the connectivity of 
this random graph.

p=0.3



Site PercolationSite Percolation

• An infinite grid Z2, with each vertex to be “open” (appear) with 
probability p independently. Now we study the connectivity of 
this random graph.

p=0.80



Site PercolationSite Percolation

• Percolation threshold is still unknown. Simulation shows it’s 
around 0.59. (note this is larger than bond percolation)

p=0.58



Site PercolationSite Percolation

• Site percolation is a generalization of bond percolation.

• Every bond percolation can be represented by a site 
percolation, but not the other way around.

• Percolation in an infinite connected graph G(V, E).

• Bond percolation: each edge appears with probability p.

• Site percolation: each vertex appears with probability p.

• Denote an arbitrary node as origin, study the cluster 
containing the origin.

• The percolation threshold of site percolation is always larger
than bond percolation.



Continuum PercolationContinuum Percolation

• Random plane network, by Gilbert, in J. SIAM 1961.

• Pick points from the plane by a Poisson process with density 

λ points per unit area. 

• Join each pair of points if they are at distance less than r.

• Equivalently,

• In the unit square [0, 1] by [0, 1], throw n points uniformly 
randomly. 

• Connect two nodes with distance less than r.

• This graph is denoted as G(n, r).



Random geometric graph Random geometric graph 



Random geometric graph Random geometric graph 



Random geometric graph Random geometric graph 



Random geometric graph Random geometric graph 

• Percolation behavior:

• Given G(n, r), and a desired property (e.g., connectivity), we 
want to find the smallest radius rQ(n) such that Q holds with 
high probability.

• Gupta and Kumar proved:

• Connectivity: if πrn2 =(logn+cn)/n. 

• As cn goes to infinity, the graph is almost surely connected.

• As cn goes to –infinity, the graph is almost surely 
disconnected.



Percolation in the real world? Percolation in the real world? 

• Communication range is not a perfect disk.



Percolation with noisy links Percolation with noisy links 

• Each pair of nodes is connected according to some 
(probabilistic) function of their (random) positions.

• A pair of points (i, j) is connected with probability g(xi -xj), 
where g is a general function that depends only on the 
distance.

• In order to keep the average degree the same, fix the 
effective area

• The average degree = λ e(g).



Percolation with noisy links Percolation with noisy links 

• Percolation threshold

• Question: what is the relationship between the percolation 
threshold and the function g? 



Percolation with noisy links Percolation with noisy links 

• Question: what is the relationship between the percolation 
threshold and the function g? 

• Each node is connected to the same number of edges on 
average. So whom should the node be connected to, in order 
to have a small percolation threshold?

• Which distribution has the best graph connectivity?

• Should I use reliable short links? Or unreliable long links? Or 
something more complex, say an annulus? 



Squashing Squashing 

• Probabilities are reduced by a factor of p, but the function is 
spatially stretched to maintain the same effective area (e.g., 
the same average degree). 



Squashing Squashing 

• Probabilities are reduced by a factor of p, but the function is 
spatially stretched to maintain the same effective area (e.g., 
the same average degree). 

• Theorem: 

• It’s beneficial for the connectivity to use long unreliable links!

• If the effective area is spread out, then the threshold density 
goes to 1.

• Question: what makes the difference? The guess is the 
existence of long links.



Shifting and squeezingShifting and squeezing

• Shift the function g outward by a distance s, but squeeze the 
function after that, so that it has the same effective area.

• Goal: use long links.



Shifting and squeezingShifting and squeezing

• Yes it helps percolation! The density threshold goes down. 



Connections to points in an annulusConnections to points in an annulus

• Points are distributed in the plane by a Poisson process with 

density λ.  Each node is connected to all the nodes inside an 
annulus A(r) with inner radius r and area 1. 

• Theorem: for any critical density λ, one can find a r such that 
any density above the threshold percolates.



SummarySummary

• Percolation: examines the relationship between local 
connection v.s. global properties. 

• How to check the connectivity?

• Next class: local connectivity rules that guarantee global 
properties.



Final projectFinal project

• Project presentation: May 5th.

– Cover your algorithm and performance analysis 
(simulation or analytical analysis)

• The final project report is due May 8th.


