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MassMass--spring localizationspring localization

Improve the accumulated localization error by a global 

iterative algorithm ---



MassMass--spring systemspring system

• Nodes are “masses”, edges are “springs”. 

• Length of the spring equals the distance measurement.

• Springs put forces to the nodes.

• Nodes move.

• Until the system stabilizes.



MassMass--spring systemspring system

• Node ni’s current estimate of its position: pi.

• The estimated distance dij between ni and nj.

• The measured distance rij between ni and nj.

• Force: Fij =dij- rij, along the direction pipj.
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MassMass--spring systemspring system

• Total force on ni: Fi=Σ Fij.

• Move the node ni by a small distance (proportional 

to Fi).

• Recurse.
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MassMass--spring systemspring system

• Total energy ni: Ei=Σ Eij= Σ (dij- rij)
2.

• Make sure that the total energy E=Σ Ei goes down.

• Stop when the force (or total energy) is small 
enough.
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MassMass--spring systemspring system

• Naturally a distributed algorithm.

• Problem: may stuck in local minima.

• Need to start from a reasonably good initial 
estimation, e.g., the iterative multi-lateration.



Ambiguity in localizationAmbiguity in localization

For noisy measurements, we use optimization methods…

Yet optimization does not solve ---



Ambiguity in localizationAmbiguity in localization

• Same distances, different realization.



Continuous deformationContinuous deformation

• Nodes move continuously without violating 

the distance constraints.



FlipFlip

• No continuous deformation, but subjects to 

global flipping.



Discontinuous flex ambiguityDiscontinuous flex ambiguity

• Remove AD, flip ABD up, insert AD.

• No continuous deformation in between. 

• But both are valid realization of the 

distances.



Rigidity theoryRigidity theory

Given a system of rigid bars and hinges in 2D, does it have a 
continuous deformation? Multiple realizations?



Rigidity theoryRigidity theory

• Given a set of rigid bars connected by 

hinges, rigidity theory studies whether you 

can move them continuously.



Rigidity and global rigidityRigidity and global rigidity

Rigid=
No continuous 

deformation

Globally rigid=

unique realization
Not rigid



IntuitionIntuition

Total degrees of freedom: 2n

How many distance constraints are necessary to limit a 
framework to only trivial motion?

==
How many edges are necessary for a graph to be rigid?



Each edge can remove a single degree of freedom

How many edges are necessary to make a graph of n nodes 
rigid?

Rotations and translations will always be possible, so at 

least 2n-3 edges are necessary for a graph to be rigid.



Are 2nAre 2n--3 edges sufficient?3 edges sufficient?

n = 3, 2n-3 = 3

yes

n = 4, 2n-3 = 5

yes

n = 5, 2n-3 = 7

no



Further intuitionFurther intuition

• Need at least 2n-3 “well-distributed” edges.

• If a subgraph has more edges than necessary, 
some edges are redundant.

• Non-redundant edges are independent.

• Each independent edge removes a degree of 
freedom.

• Therefore, 2n-3 independent edges guarantee 
rigidity.



LamanLaman conditioncondition

Laman condition:
A graph is generically minimally rigid in 2D if and 

only if it has 2n-3 edges and no subgraph of k 

vertices has more than 2k-3 edges.



HennebergHenneberg constructionsconstructions

• Henneberg constructions (Tay-Whiteley):  a Laman
graph can be constructed inductively by adding one 
vertex at a time: 

• Start with an edge 

• At each step, add a new vertex 

• Type I step: join the vertex to two old vertices via two 
edges 

• Type II step: join the vertex to three old vertices with at 
least one edge in between, via three edges. Remove 
an old edge between the three endpoints.



HennebergHenneberg constructionsconstructions

• Type I step: join the vertex to two old vertices via two 
edges 

• Type II step: join the vertex to three old vertices with at 
least one edge in between, via three edges. Remove 
an old edge between the three endpoints.

Type I Type II



Global rigidityGlobal rigidity
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Solution:

G must be 3-connected

G must be redundantly rigid:

It must remain rigid upon 

removal of any single edge

G must rigid



PapersPapers

• D. Moore, J. Leonard, D. Rus, S. Teller, Robust 
distributed network localization with noisy 
range measurements, Proc. ACM SenSys 2004.

• Anchor-free method.

• Rigidity-aware.



TrilaterationTrilateration without noisewithout noise

• If three anchors are not on the same line, 

trilateration with accurate distance 

measurements gives a unique location.



TrilaterationTrilateration with noisewith noise……

• With noisy measurements, trilateration can 

have flip ambiguity.



Use quadrilateralsUse quadrilaterals

• Four nodes with fixed pair-wise distances

• It is the smallest 3-connected redundantly 

rigid graph � globally rigid.



Robust quadrilateralsRobust quadrilaterals

• If measurement noise is bounded, the 

quadrilateral has no incorrect flip.

Incorrect flip: can’t 
verify whether C or C’
is correct.
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Robust quadrilateralsRobust quadrilaterals

• If measurement noise is bounded, the 

quadrilateral has no incorrect flip.

Minimize the error by choosing 

φφφφ=π/2-2θ.

$ 2sinABerrd d θ=

Robust quadrilateral satisfies

2sinerrd b θ<

Where b is the shortest side and θ
is the smallest angle.



ClustersClusters

• Robust quads that share three nodes can 

be merged into clusters.

• The cluster is still a 3-connected 

redundantly rigid graph � globally rigid.

• Actually it has 3n-6 edges.



Three phasesThree phases

• Cluster localization

– Each node x find its local robust quadrilaterals.

– Merge them to a robust cluster around x.

• (optional) cluster optimization

– Refine the nodes’ location inside a cluster.

• Cluster transformation

– Glue the local quadrilaterals together

– Transformation to a global coordinate system.



Algorithm phase I: cluster localizationAlgorithm phase I: cluster localization

1. Each node x gets the distance measurements 
between each pair of 1-hop neighbors.

2. Identify the set of robust quadrilaterals.

3. Merge the quads if they share 3 nodes.

4. Estimate the positions of as many nodes as 
possible by iterative trilateration.

• Note: Local coordinate system rooted at x.



Algorithm phase II: cluster Algorithm phase II: cluster 

optimizationoptimization

• For each cluster around node x, refine the 

position estimates, for example, by mass-

spring relaxation.

• Optional. 



Algorithm phase III: cluster Algorithm phase III: cluster 

transformationtransformation

• Align neighboring local coordinates systems.

• Find the set of nodes in common between two 
clusters. 

• Compute the translation, rotation that best align 
them.



SimulationsSimulations

• 183 nodes uniformly inside a building.

• Connectivity is only between nodes not obstructed 

by walls.



SimulationsSimulations

• Cluster success rate v.s. node degree.

• Each plot represents a simulation run.



Algorithm propertiesAlgorithm properties

• Nodes not included in the robust quadrilaterals are 
not localized.

– A wrong location is worse than no location.

• Even as noise goes to 0, avg degree ≥ 10 to 
achieve 100% localization.

• Not good for sparse networks. 

• The avg degree ≅ 6 for best throughput of the 
network.  



DemoDemo

• Localize mobile nodes

• Show a video clip



ObservationsObservations

• Localization algorithm performs poorly when 

the graph is sparse.

• Rigidity is an issue in anchor-free methods, 

or anchor-based methods with noisy 

measurements.


