MEMORY SYSTEM DESIGN

Danang Wahyu Utomo

danang.wu@dsn.dinus.ac.id +6285 725 158 327

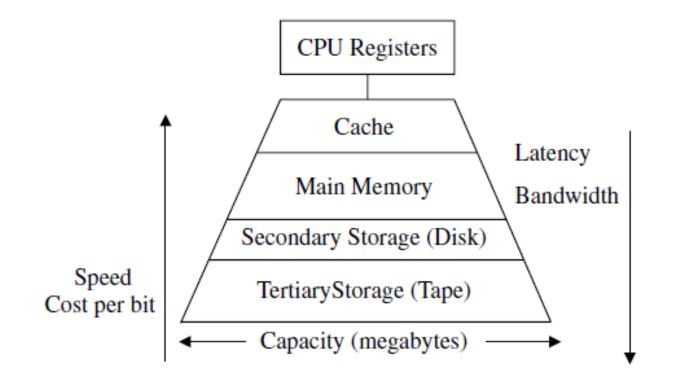
RENCANA KEGIATAN PERKULIAHAN SEMESTER

W	Pokok Bahasan
1	Organisasi dan Arsitektur Komputer
2	Sistem Komputer
3	Instruction Set Architecture and Design
4	
5	Computer Arithmetic
6	
7	Review Materi 1-6
8	Ujian Tengah Semester

W	Pokok Bahasan
9	Desain Unit Pemrosesan
10	
11	Desain Sistem Memory
12	
13	Desain dan Organisasi Input Output
14	
15	Teknik Desain Pipelining
16	Ujian Akhir Semester

Reference

 Mustafa Abd-el-Bhar, Hesham El Rewini – Fundamentals of Computer Organization and Architecture 9th Edition (2004)


 William Stallings – Computer Organization and Architecture Designing For Performance 8th Edition (2009)

Content

- Cache Memory
- Main Memory
- Virtual Memory
- Read-Only Memory

Memory Hierarchy

Memory Hierarchy

- Cache : small, expensive, relatively fast unit
- Cache and memory are built using solid-state semiconductor
- Cache and memory are customary to call fast memory level (primary level)
- Larger, less expensive, far slower built using magnetic memories is typically the disk and the tape

Memory Hierarchy

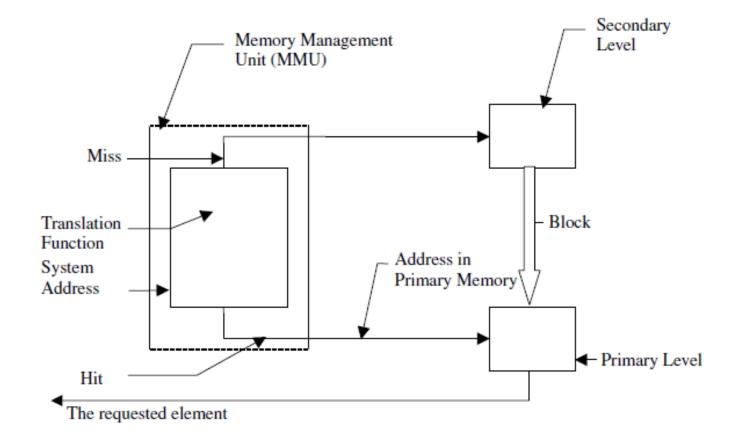
- Memory hierarchy can be characterized by parameter :
 - Access type
 - Capacity
 - Cycle time
 - Latency
 - Bandwidth
 - cost

D

Hierarchy Memory

- The effectiveness of memory hierarchy depend on the principle of moving information into the fast memory and accessing it many time before replacing with new information, usually called *locality of reference*
- There are two locality : spatial and temporal
- Spatial locality refers to the address has ben referenced
 Example : straightline program
- Temporal locality refers to a particular memory item has been referenced

Example : an instruction in program loop

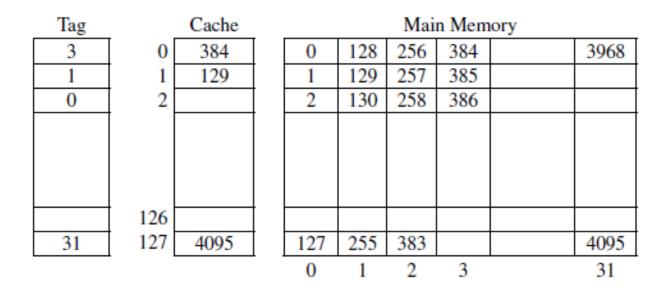

Cache Memory

- Hiding or storing the information
- When processor makes a request for a memory reference, the request is sought in the cache
- If the request corresponds to an element that is currently in the cache, it is called cache **hit**
- If the request corresponds to an element that is not currently in the cache, it is called cache miss
- When the requested element is not found in the cache, it has to be brought from a subsequent memory level in the hierarchy memory

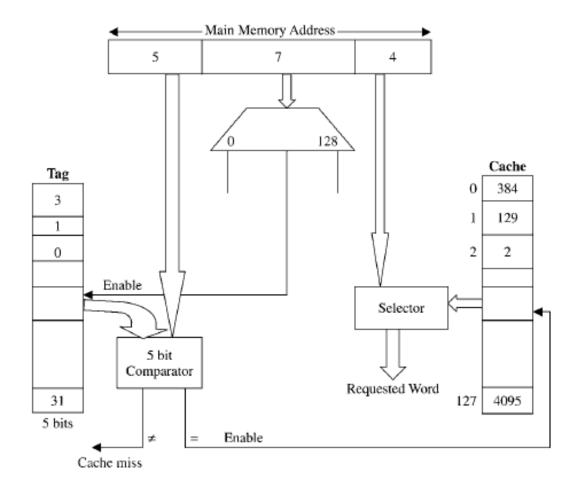
Cache Memory – Mapping Function

- Request for accessing a memory element is made by the processor through issuing the address of the requested element
- Address issued by the processor may correspond to an element that exist in the cache; otherwise, an element residing in the memory
- Memory management unit (MMU) used to determine the whereboats of the requested element

Address Mapping Operation


Address Mapping Function

- If address translation reveals that the issued address corresponds to an element residing in the cache, the element will be made available to the processor
- If the element is not currently residing in the cache, it will be brought from the memory and place in the cache, the element will be made available to the processor

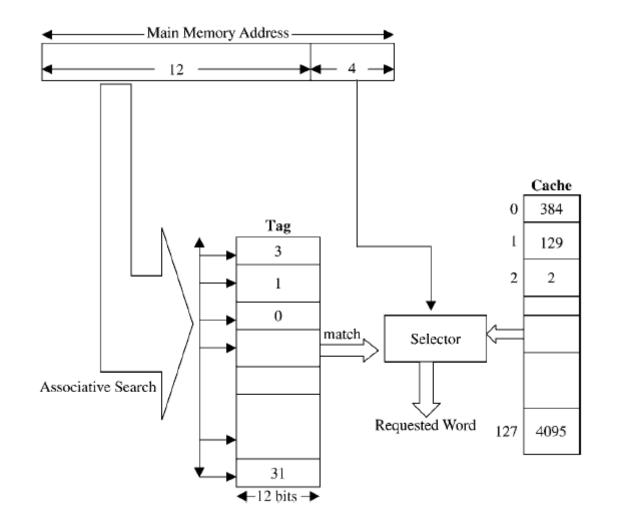

Direct Mapping

- Places an incoming main memory block into a specific fixed cache block location
- Its simplicity in determining where to place an incoming main memory block in the cache
- Inefficient use of the cache ; a number of main memory blocks may compete for a given cache block even if there exist other empty cache blocks.

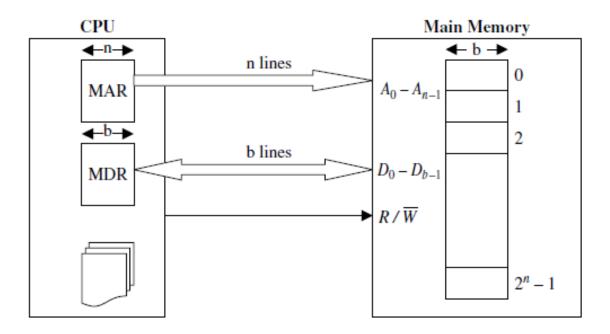
Mapping Main Memory to Cache Blocks

Direct-Mapped Address

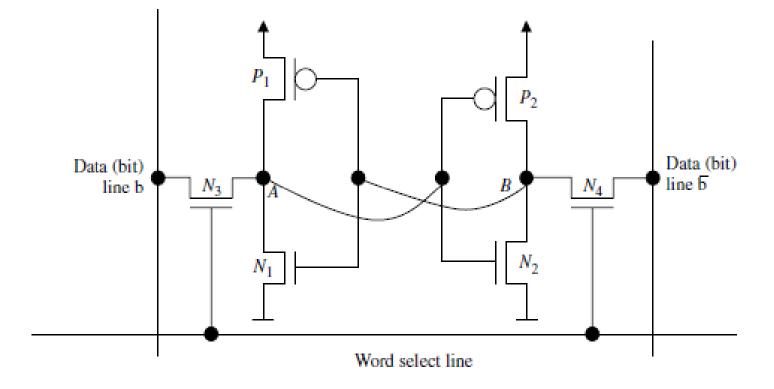
Associative Mapping


- An incoming main memory block can be placed In any available cache block
- The MMU interprets the address issued by the processor by dividing it into two field : Tag Field and Word Field
- Tag field

identify the block while residing in the cache


Word field

identify the element **within the block** that is requested by the processor


Associative-Mapped Address

Main Memory

Main Memory

Read Operation

- ▶ Both line *b* and *b* are precharged high
- the word select line is activated, thus turning on both transistor N₃ and N₄
- Depending on the internal value stored in the cell, pointA(B) will lead to the discharge of line b(b)

Write Operation

- The bit lines are precharged such that b(b) = 1(0)
- The word select line is activated, thus turning on both transistor N₃ and N₄
- The bit line precharged with 0 will have to force the point A(B), which has 1 to 0

Virtual Memory

- The concept of virtual memory is similar to that of the cache memory
- Vritual memory attempts to optimize the use of the main memory with the hard disk
- Direct Mapping ???
- Associative Mapping ???

Read-Only Memory

>???

TERIMA KASIH