Wireless sensor network based cattle health monitoring system for early detection of disease

Dr. Saroj Ku. Lenka
Dept. of Computer Science and Engineering
Mody Institute of Technology and Science, DU
Rajasthan, India
Email: lenka.sarojkumar@gmail.com

Ambarish G. Mohapatra
Dept. of Applied Electronics and Instrumentation
Silicon Institute of Technology
Bhubaneswar, India
Email: ambarish.mohapatra@gmail.com

Sonali Pradhan
Dept. of Computer Science Engineering
Krupajal Engineering College
Bhubaneswar, India
Email: pradhan_sonali@gmail.com

Sidharth Das
Dept. of IT
Synergy Institute of Technology
Dehnkanal, India
Email: sd_dash@yahoo.com

Abstract—Early diagnosis and treatment of sick cattle may be even more important than the type of treatment administered. The aim of this study was to prioritize the objectives of research into new sensing systems to monitor routinely the health of dairy cattle. A sophisticated system capable of continuously assessing the health of individual cattle, aggregating these data, and reporting the results to owners and regional authorities could provide tremendous benefit to the livestock industry. Monitoring methods which rely on transducers to detect sudden body temperature change has limited specificity and high numbers of false positives unless supported by robust models to integrate data from a number of sources. The intimate connection with its immediate physical environment allows each sensor to provide localized measurements and detailed information that is hard to obtain through traditional instruments. Body temperature plays a major role in the detection of ill health. The temperature data can be collected using wireless sensor network and the collected data can be used for early detection of diseases. This paper presents results from a prototype wireless body temperature monitoring system that utilizes wearable technology to provide continuous animal health data using famous National Instruments data acquisition hardwires. The infrastructure, hardware, software and representative physiological measurements are presented.

Keywords—Temperature monitoring system; wearable sensor; Data Acquisition; wireless sensor network

I. INTRODUCTION

A. Conventional technique of cattle body temperature monitoring

We use a thermometer to measure the temperature of the body. The unit of measurement is degree centigrade (°C). The normal temperature of cattle is 37°C to 38.5°C. We measure the body temperature of animals by placing a thermometer in the anus [4].

TABLE I. Normal body temperatures

<table>
<thead>
<tr>
<th>Animal</th>
<th>Normal Temperature °C</th>
<th>Normal Animal</th>
<th>Temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle</td>
<td>38.5</td>
<td>Calf</td>
<td>39.5</td>
</tr>
<tr>
<td>Buffalo</td>
<td>38.2</td>
<td>Goat</td>
<td>39.5</td>
</tr>
<tr>
<td>Sheep</td>
<td>39.0</td>
<td>Camel*</td>
<td>34.5 - 41.0</td>
</tr>
<tr>
<td>Llama</td>
<td>38.0</td>
<td>Horse</td>
<td>38.0</td>
</tr>
<tr>
<td>Donkey</td>
<td>38.2</td>
<td>Pig</td>
<td>39.0</td>
</tr>
<tr>
<td>Chicken</td>
<td>42.0</td>
<td>Piglet</td>
<td>39.8</td>
</tr>
</tbody>
</table>

Figure 1. Manual Temperature measurement using thermometer.

Figure 2. Cattle is ready for the test
Body temperatures may be 1°C above or below these temperatures. If the animal body temperature is above the temperature range provided in Table I then this is a sign of ill health [3]. When an animal has a high temperature it has a fever.

B. Research Goal

The overall research of the project is to monitor the health condition of the animal using a wireless sensor mote. The sensor mote contains in-network processing algorithm for improved health monitoring and routing of health data [1]. These systems will improve the ability of the livestock industry to react and to predict disease onset for epidemiological spread. Traditionally, cattle health has been ascertained by visually assessing animal behavior or by manual inspections from a farmer or veterinarian [3]. This is time-intensive and can realistically not be performed often.

In this research, each time animal data are uploaded to a base station, the offline processor could analyze them to detect abnormalities. Animal status could then be easily summarized as discrete states of health, such as well, suspect and abnormal. These data could be sent to regional and national collection centers that monitor the health of many herds, providing data to spot larger trends and support epidemiological research [2]. This information, in concert with previous trend data, can then be used to generate a regional “health weather forecast” that can notify veterinarians, ranchers and emergency responders that animal health concerns, possibly exacerbated by projected weather patterns, and are imminent. Sensor nodes collect the data of interest (e.g., temperature, heart rate, animal location, etc.), and wirelessly transmit them, possibly compressed and/or aggregated with those of neighboring nodes, to other nodes. WSNs can be used to monitor remote and/or hostile geographical regions, to trace animal movement, to improve weather forecast, and so on [5].

Figure-3: Wireless sensor network configuration

II. LITERATURE REVIEW

1. Kevin Smith1, Angel Martinez1, Roland Craddolph, Howard Erickson, Daniel Andresen, and Steve Warren, Department of Electrical & Computer Engineering, Kansas State University, Manhattan, KS, USA, Department of Computing & Information Sciences, Kansas State University, Manhattan, KS, USA, Department of Anatomy & Physiology, Kansas State University, Manhattan, KS, USA in their paper “An Integrated Cattle Health Monitoring System” described about an advanced monitoring tools, a distributed software infrastructure, and processing algorithms will allow the livestock industry to react and to predict disease onset in cattle.

2. Ze Li, Haiying Shen and Baha Alsaify, Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR 72701 (zxl008, hshen, balsaify)@uark.edu in their paper “Integrating RFID withWireless Sensor Networks for Inhabitant, Environment and Health Monitoring” described about a specific system call Hybrid RFID and WSN System (HRW) to integrate the RFID and WSN technology, which overcomes their disadvantages and puts their advantages to a good cause. The HRW is composed of Gateway RFID readers (GRFID) and Hybrid Smart Nodes (HSN).

III. PROPOSED HEALTH MONITORING SYSTEM METHODOLOGY FOR CATTLE

A. Overall Approach

This system contains a transmitter which transmits the health record and a unique identification number [3]. This monitoring equipment periodically records the animal's core body temperature, head motion, and absolute position (via GPS), as well as the temperature and humidity of the surrounding environment. According to wireless sensor network, ZigBee-compatible centralized nodes will be placed in areas of high animal traffic such as water troughs, feed bunks and shelters [1]. Whenever any cattle wanders within range of the centralized wireless sensor node, the buffered health data are uploaded to the centralized node which will again transmit to the main base station for better analysis and storage of data [3].

B. Measurement Parameters

Body temperature [Figure-4] and heart rate may be compared to known trends in circadian rhythm [Figure-10] over the course of a day. Deviation from the norm is a good initial indicator of aberrant behavior and possibly illness. We also plan to use animal head motion to assess behavior, a method that has several advantages [2]. A head motion sensor is a simple device that can be packaged inside a small enclosure and placed on an ear tag or halter. The motion sensor data has to be sampled at 50Hz or greater per channel, for better signal acquisition [1]. An on-board algorithm can be developed to classify head motion into different types of behavior that can be stored as few bytes per minute rather than many bytes per second. A GPS device can also be implanted for the exact location of the cattle, which is required for a complete behavioral profile study. The behavior can also account for observed fluctuations in heart rate and temperature, allowing a better activity and health record to be compiled [1].
C. Prototype Monitoring System
A single sensor mote contains a temperature sensor for core body temperature measurement, a head motion sensor for detection of angle of movement of the cattle head, a GPS module for the detection of exact location of the cattle, a heart rate sensor for the monitoring of heart pulses using a standard set of electrodes, a surrounding environmental condition monitoring module [Figure-5].

This system is unsuitable for long-term deployment since the sensors require a conductive gel to maintain good electrical contact with the skin; the gel can dry up or the electrodes can move out of position within a matter of hours. A head motion sensor is a three-axis accelerometer enclosed in a waterproof casing, which is attached to a halter placed on the animal. The above sensing units are directly connected to the processing unit along with some electronic safety systems. The processing can be done using a core system, micro-controller or micro-processors. The processing algorithm can be downloaded to the micro-controller for standalone mode operation. A receiver module is required for the implementation of transmitter wake-up conditions. A sensor mote contains some external interface which can be used for program loading and external device interface. The algorithm can be written in any assembly language or any other hardware programming techniques depending on the type of compiler to load it in the program memory. The current prototype consists of custom hardware designed to integrate a collection of sensors and commercial products into one system. The current prototype consists of custom hardware designed to integrate a collection of sensors and commercial products into one system.

When an efficient algorithm for onboard processing of sensor data has been developed, it will be implemented on the core processor or a processor dedicated to the task [1]. This will vastly reduce the memory required for data storage as well as the power required for wireless data transmission.

The collected data are transmitted through the animal to the storage system using a 315/433.92 MHz wireless link. The system periodically records animal location and uses time data received from the GPS satellites to accurately timestamp sampled data [1].

D. Information System Support
The health information can be stored in the base station database and application to assist. The database consists of all the record columns of the cattle health. When an animal comes within the wireless receiver range (i.e. the base node), the wearable sensor senses the measurement parameters and sends the data to the receiver. The animal having a unique ID which associates the animal with the dataset [2]. The viewing application is developed with National Instruments LabView and its tool-kits. Tools like these can aid in the early detection of disease and help subsequent spread of disease.

E. Communication protocol
The proposed communication protocol used in this project is a medium access control protocol based protocol (WiseMAC). WiseMAC is a medium access control protocol [Figure-6] designed for the WiseNETT wireless sensor network. It is based on CSMA and uses the preamble sampling technique to minimize the power consumed when listening to an idle medium. A unique feature of this protocol is to exploit the knowledge of the sampling schedule of its direct neighbors in order to use a wake-up
preamble of minimized size. This scheme allows not only to reduce the transmit and the receive power consumption, but also brings a drastic reduction of the energy wasted due to overhearing. Backoff and medium reservation schemes have been selected to provide fairness and collision avoidance. WiseMAC requires no set-up signaling, no network-wide time synchronization and is adaptive to the traffic load. It provides ultra-low average power consumption in low traffic conditions and high energy efficiency in high traffic conditions.

Figure-6: WiseMAC protocol

IV. RESULTS AND DISCUSSIONS

The temperature data was recorded from the cattle for 1000 samples [Figure-7]. The temperature data was having minor variations from the normalized data [Figure-6]. The algorithm was used to normalize the noisy data and to eliminate the variations. Some of the voltage readings are listed in the Table-II.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Voltage in Volt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.0332</td>
</tr>
<tr>
<td>2</td>
<td>4.0434</td>
</tr>
<tr>
<td>3</td>
<td>4.0230</td>
</tr>
<tr>
<td>4</td>
<td>4.0332</td>
</tr>
<tr>
<td>5</td>
<td>4.0332</td>
</tr>
<tr>
<td>6</td>
<td>4.0332</td>
</tr>
<tr>
<td>7</td>
<td>4.0332</td>
</tr>
<tr>
<td>8</td>
<td>4.0332</td>
</tr>
<tr>
<td>9</td>
<td>4.0332</td>
</tr>
</tbody>
</table>

The raw recorded data was plotted as well as the normalized data using Matlab. From the normalized curve we can conclude that the average temperature reading was around 37.75 degree centigrade.
The cattle heart rate was also recorded for 728 seconds and the graphical wave also seen plotted for different samples [Figure-10].

V. CONCLUSION AND FUTURE WORK

Our work has demonstrated the benefits of creating a linked visual-statistical analysis system for animal health monitoring. This paper presented early results from a cattle-worn system capable of acquiring multiple physiological and environmental parameters: core body temperature, heart rate, GPS location, ambient temperature & humidity, and motion (via a 3-axis accelerometer). More work is required for the analysis of accelerometer data, heart rate and early prediction of disease and information aggregation in a collection of local/regional databases.

ACKNOWLEDGEMENT

The authors thank Dr. Susant Dash, OUAT, Orissa-India and his team for their assistance with animal tests and their system development insights. We also thank Prof. Sanjit Dash, Krupajal Engineering College, Orissa for his help with the data acquisition and analysis of temperature acoustic wave from the microphone.

REFERENCE